

AD Series Motor Driven Diaphragm Pump

OVERVIEW

The AD series is a compact diaphragm pump intended for multipurpose dosing applications. Extensive build options permit great customisability to maximise economy and practicality, as such the AD series are an efficient multi-use design.

All pumps have manual stroke length adjustment as standard. Optional automatic stroke length adjustment accepts a 4-20 mA signal (10 mm stroke length models only).

The pump is encased in grey anodized aluminium casing finished with an epoxy anti acid paint.

Can be built with an ATEX Zone 2 rated motor.

An AD Motor Pump with polypropylene pump head.

TECHNICAL FEATURES

• Flow Rate 10 - 123 L/H

• Maximum Pressure 14 Bar (low flow rate models), 6 bar (high flow rate models).

- Motor Options Single Phase, Three Phase, optional ATEX Zone 2 compatibility. Accepts 230 400 V input at 50 Hz, single phase motors either 230 V or 110 V.
- Inverter Control Yes. Expert installation only. Requires self-ventilated motor.
- Pump Head PP, PVC, AISI or PVDF.
- Seal Material FPM, EPDM & NBR.
- Thread Gas male 1/2"

.

Atex rated motors are Three Phase only; ATEX ratings as follows:

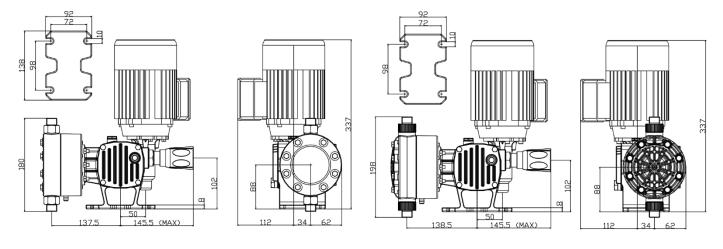
ATEX Rated Motor ATEX EEx-d 2G (Zone1) IIB T4 IP55 (Gas)

ATEX EEx-d 2D (Zone21) IIB T4 IP65 (Dust)

Valves Single ball check valve

4 - 20 mA CONTROL OPTIONS

AD series pumps accept two options for a 4-20 mA control - inverter control or automatic stroke length control. Automatic stroke length control is confined to a 5.6-12 mA signal as illustrated by the chart to the right. The tolerance is $\pm 5\%$. Please note that this requires a separate 24 V AC power supply and is available for 10 mm stroke length models only.



AD Series Motor Driven Diaphragm Pump

DIMENSIONS

Pump with PP head

Pump with AISI head

PRODUCT INFORMATION

Code			Pressure (Bar)							Motor Output	Valve Size
	Flow Rate (L/H)		AISI Pump Head		PP/PVDF Pump Head		Strokes per Minute		Stroke Length		
	50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz	(mm)	(Kw)	
AD0016**00100	16	19	14	14	14	14	60	72	4	0.18	1⁄2″ Gm*
AD0033**00100	33	40	14	12	14	12	120	144	4		
AD0030**00100	30	36	10	10	10	10	60	72	4		
AD0060**00100	60	72	10	10	10	10	120	144	4		
AD0061**00100	61	73	7	6.5	7	6.5	60	72	4		
AD0123**00100	123	148	6	5	6	5	120	144	4		

*³⁄₄" valves builds are available.